MATH SOLVE

4 months ago

Q:
# Which of the following choices are equivalent to the expression below ? X^3/5

Accepted Solution

A:

Answer:ACDStep-by-step explanation:Given in the question an expression[tex]x^{\frac{3}{5}}[/tex]We know that [tex]n^{\frac{x}{y}} = \sqrt[y]{n^{x}}[/tex]here x = 3 y = 5so[tex]n^{\frac{3}{5}}=\sqrt[5]{n^{3} }[/tex]When exponent power rule is applied we can say that[tex]x^{\frac{3}{5}}=(x^{3})^{\frac{1}{5} }[/tex]because 3/5 = 3*(1/5)Thirdly,[tex]\sqrt[5]{x^{3}} = (\sqrt[5]{x})^{3}[/tex]